ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Andrea Murari, Guido Vagliasindi, Eleonora Arena, Paolo Arena, Luigi Fortuna, JET-EFDA Contributors
Fusion Science and Technology | Volume 58 | Number 2 | October 2010 | Pages 685-694
Selected Paper from the Sixth Fusion Data Validation Workshop 2010 (Part 1) | doi.org/10.13182/FST10-A10893
Articles are hosted by Taylor and Francis Online.
In practically all fields of science, measurements are affected by noise, which can sometimes be modeled with an appropriate probability distribution function. The results of measurements are therefore known only with uncertainties that sometimes can be significant. In many cases the noise source is independent of the system to be studied and the quantities to be measured. In this paper, a numerical approach to handle statistical uncertainties, due to an independent noise source, in a fuzzy logic system is developed. Numerical analysis and various tests with a benchmark show how statistical error bars can be interpreted as an independent "axis of complexity" with respect to the fuzzy boundaries of the membership functions. The uncertainties in the inputs can be transferred to the output and handled separately from the system intrinsic fuzzyness. The main advantages of this independent treatment of the measurement errors are shown in the case of a binary classification task: the regime confinement identification in high-temperature tokamak plasmas. Significant improvements in the correct prediction rate have been achieved with respect to the classification performed without considering the error bars in the measurements.