ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Hartmut Zohm
Fusion Science and Technology | Volume 58 | Number 2 | October 2010 | Pages 613-624
Technical Paper | doi.org/10.13182/FST10-06
Articles are hosted by Taylor and Francis Online.
A set of simple scaling relations is derived to assess the impact of plasma physics and technology assumptions on the design of a DEMO tokamak fusion reactor. At the same time, it is shown that by postulating that the plasma physics assumptions are consistent with those that can be reliably reached in present-day experiments and that the recirculating power is reasonably low, a tokamak DEMO operating with steady-state plasma operation is of large size, comparable to a reactor - suggesting that the study of pulsed options should receive more attention in the future. The scaling relations reproduce well the results from a number of previous studies, indicating that they are particularly well suited for future parametric scoping studies. From the relations derived, it also follows that the areas in which future progress will have a particularly large impact on the attractiveness of DEMO are the limit in plasma physics and in technology the magnetic field strength Bt and the wall-plug efficiency CD of the systems to drive noninductive current.