ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. W. Petzoldt, R. Gallix, D. T. Goodin, E. I. Valmianski, ARIES Team, W. S. Rickman
Fusion Science and Technology | Volume 49 | Number 1 | January 2006 | Pages 56-61
Technical Paper | doi.org/10.13182/FST06-A1085
Articles are hosted by Taylor and Francis Online.
The hohlraum surrounds the fuel capsule in a heavy ion fusion (HIF) target. The hohlraum absorbs ion beam driver energy and emits this energy uniformly around the capsule in the form of X-rays. High-atomic-number materials are necessary in the walls of the hohlraum to contain the X-ray energy around the capsule during the implosion process. These high-atomic-number hohlraum materials affect many aspects of an HIF power plant operation. A systematic review of available information for all high-atomic-number elements was conducted to select candidate hohlraum materials. The effects of materials on target fabrication, energy cost, target gain, radioactivity, chemical toxicity, and potential for recycle were considered. Lead and tungsten are the lowest-cost acceptable materials in the primary coolant. The combination of lead and tungsten provide better target gain than either material alone. Seeding the primary coolant with submicron-sized tungsten particles can minimize tungsten growth in small openings in power plant components such as vacuum tritium disengagers. Concerns remain for possible tungsten particle agglomeration, settling, or erosion caused by tungsten particles. Tungsten could be replaced by several lanthanide elements if tungsten proves unacceptable.