ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. W. Petzoldt, R. Gallix, D. T. Goodin, E. I. Valmianski, ARIES Team, W. S. Rickman
Fusion Science and Technology | Volume 49 | Number 1 | January 2006 | Pages 56-61
Technical Paper | doi.org/10.13182/FST06-A1085
Articles are hosted by Taylor and Francis Online.
The hohlraum surrounds the fuel capsule in a heavy ion fusion (HIF) target. The hohlraum absorbs ion beam driver energy and emits this energy uniformly around the capsule in the form of X-rays. High-atomic-number materials are necessary in the walls of the hohlraum to contain the X-ray energy around the capsule during the implosion process. These high-atomic-number hohlraum materials affect many aspects of an HIF power plant operation. A systematic review of available information for all high-atomic-number elements was conducted to select candidate hohlraum materials. The effects of materials on target fabrication, energy cost, target gain, radioactivity, chemical toxicity, and potential for recycle were considered. Lead and tungsten are the lowest-cost acceptable materials in the primary coolant. The combination of lead and tungsten provide better target gain than either material alone. Seeding the primary coolant with submicron-sized tungsten particles can minimize tungsten growth in small openings in power plant components such as vacuum tritium disengagers. Concerns remain for possible tungsten particle agglomeration, settling, or erosion caused by tungsten particles. Tungsten could be replaced by several lanthanide elements if tungsten proves unacceptable.