ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. W. Petzoldt, R. Gallix, D. T. Goodin, E. I. Valmianski, ARIES Team, W. S. Rickman
Fusion Science and Technology | Volume 49 | Number 1 | January 2006 | Pages 56-61
Technical Paper | doi.org/10.13182/FST06-A1085
Articles are hosted by Taylor and Francis Online.
The hohlraum surrounds the fuel capsule in a heavy ion fusion (HIF) target. The hohlraum absorbs ion beam driver energy and emits this energy uniformly around the capsule in the form of X-rays. High-atomic-number materials are necessary in the walls of the hohlraum to contain the X-ray energy around the capsule during the implosion process. These high-atomic-number hohlraum materials affect many aspects of an HIF power plant operation. A systematic review of available information for all high-atomic-number elements was conducted to select candidate hohlraum materials. The effects of materials on target fabrication, energy cost, target gain, radioactivity, chemical toxicity, and potential for recycle were considered. Lead and tungsten are the lowest-cost acceptable materials in the primary coolant. The combination of lead and tungsten provide better target gain than either material alone. Seeding the primary coolant with submicron-sized tungsten particles can minimize tungsten growth in small openings in power plant components such as vacuum tritium disengagers. Concerns remain for possible tungsten particle agglomeration, settling, or erosion caused by tungsten particles. Tungsten could be replaced by several lanthanide elements if tungsten proves unacceptable.