ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Imagawa, A. Sagara, H. Yamada, N. Nakajima, A. Komori, O. Motojima, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 593-598
Chapter 13. Prospects for Fusion Reactor | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10847
Articles are hosted by Taylor and Francis Online.
Heliotron reactors have several features suitable for a fusion power plant, such as no need for current drive, no plasma current disruptions, suitability for steady-state operation, and a wide space between helical coils useful for maintenance of in-vessel components. According to recent reactor studies based on the experimental results in the Large Helical Device (LHD), the plasma major radius of a heliotron reactor is set to 14 to 16 m in order to install shielding and breeding blankets with total thickness of 1 m. The central toroidal field for the self-ignition is 5 to 6 T under the assumption that the confinement enhancement factor is 1.2 to 1.4 with respect to the LHD. The stored magnetic energy is estimated to be 120 to 150 GJ. Both the major radius and the magnetic energy are three times larger than those of ITER. Its large helical windings, however, can be realized by steady extension from the ITER technology, because cable-in-conduit conductors similar to those for ITER toroidal field coils can be adopted. Improvement of plasma confinement is essential to reduce the number of magnet systems. A roadmap to a heliotron DEMO is discussed.