ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
S. Imagawa, A. Sagara, H. Yamada, N. Nakajima, A. Komori, O. Motojima, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 593-598
Chapter 13. Prospects for Fusion Reactor | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10847
Articles are hosted by Taylor and Francis Online.
Heliotron reactors have several features suitable for a fusion power plant, such as no need for current drive, no plasma current disruptions, suitability for steady-state operation, and a wide space between helical coils useful for maintenance of in-vessel components. According to recent reactor studies based on the experimental results in the Large Helical Device (LHD), the plasma major radius of a heliotron reactor is set to 14 to 16 m in order to install shielding and breeding blankets with total thickness of 1 m. The central toroidal field for the self-ignition is 5 to 6 T under the assumption that the confinement enhancement factor is 1.2 to 1.4 with respect to the LHD. The stored magnetic energy is estimated to be 120 to 150 GJ. Both the major radius and the magnetic energy are three times larger than those of ITER. Its large helical windings, however, can be realized by steady extension from the ITER technology, because cable-in-conduit conductors similar to those for ITER toroidal field coils can be adopted. Improvement of plasma confinement is essential to reduce the number of magnet systems. A roadmap to a heliotron DEMO is discussed.