ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. Yoshimura, S. Kubo, T. Shimozuma, H. Igami, H. Takahashi, S. Kobayashi, S. Ito, Y. Mizuno, Y. Takita, Y. Nakamura, K. Ohkubo, R. Ikeda, K. Ida, M. Yoshinuma, S. Sakakibara, T. Mutoh, K. Nagasaki, H. Idei, T. Notake, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 551-559
Chapter 11. Electron Cyclotron Resonance Heating | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST58-551
Articles are hosted by Taylor and Francis Online.
Trials of steady-state operation (SSO) in the Large Helical Device (LHD) were started when a continuous wave (cw) gyrotron with the output power up to 0.2 MW was introduced to the electron cyclotron heating (ECH) system on LHD in 2003. During the first trial of SSO in the seventh LHD experimental campaign in 2004, severe temperature increase on the waveguide transmission line and, as a result, intense pressure increase in the evacuated waveguide occurred, which terminated the operation at 756 s. Additional pumping sections and cooling structures on the transmission line worked well, allowing a 3900-s sustainment of plasma with ne = 0.15 × 1019 m-3 and Te0 = 1.7 keV by 0.1 MW injection power in 2005. The improvement of the ECH system by introducing cw gyrotrons with higher power for further improvement of plasma performance in SSO is in progress.Investigations on electron cyclotron current drive (ECCD) physics have been advanced a few years after the proof of ECCD in LHD. By obliquely injecting second-harmonic X-mode EC waves in toroidal direction, stable current up to 5.5 kA is driven, which was evaluated as a difference in plasma currents of the co- and counter-ECCD discharges with 0.1-MW EC wave power. It takes a few seconds for the driven current to saturate. Change in profile of rotational transform by ECCD and profile of driven current density are investigated by use of motional Stark effect measurement. Peaked and localized driven current profile at the plasma core region was confirmed for on-axis second-harmonic ECCD discharges.