ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. Igami, S. Kubo, T. Shimozuma, Y. Yoshimura, T. Notake, H. Takahashi, H. Idei, S. Inagaki, H. Tanaka, K. Nagasaki, K. Ohkubo, T. Mutoh, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 539-550
Chapter 11. Electron Cyclotron Resonance Heating | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10841
Articles are hosted by Taylor and Francis Online.
For expanding applicable parameter ranges of electron cyclotron resonance heating (ECRH), various methods of ECRH have been studied with use of millimeter-wave sources of 77-, 82.7-, 84-, and 168-GHz gyrotrons in the Large Helical Device (LHD). The fundamental ordinary (O-) mode and the second-harmonic extraordinary (X-) mode are mainly used for starting up, sustaining, and controlling the plasma. Heating efficiencies of ECRH by launching of these modes have been investigated experimentally for wide range of the central electron density and compared with power absorption rates obtained by ray-tracing calculation. ECRH by the third-harmonic X-mode has been performed in each magnetic configuration Bax = 1 and 2 T with launching of 84-GHz range and 168-GHz millimeter waves. Increases of the electron temperature and the stored energy were observed in both cases. ECRH by the electrostatic electron Bernstein wave (EBW) has been expected to be a promising substitute in parameter ranges where the conventional methods of ECRH by the electromagnetic modes are not available. To perform ECRH by the EBW in LHD, extraordinary-EBW (X-B) and ordinary-extraordinary-EBW (O-X-B) mode conversion processes, the propagation of the wave, and the absorption have been investigated experimentally and theoretically.