ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
B. J. Peterson, S. Yoshimura, E. A. Drapiko, D. C. Seo, N. Ashikawa, J. Miyazawa
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 412-417
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10826
Articles are hosted by Taylor and Francis Online.
Bolometers are a powerful tool for diagnosing plasma radiation in a reactor-relevant environment. Resistive and imaging bolometers have been applied to the Large Helical Device (LHD) to measure radiative phenomena. Installed on LHD are 56 channels of resistive bolometers at four different ports, providing total radiated power measurements and radial profiles with 5-ms temporal resolution. Calibration coefficients are seen to vary slightly year to year. Imaging bolometer foils are installed at four ports. Infrared cameras have been used at some of these ports to provide an image of the foil temperature, which can be analyzed to give an image of the radiated power absorbed by the foil. Upgrades of existing imaging bolometers using platinum foils and more advanced infrared cameras with frame rates of 345 and 420 frames/s (minimum time resolutions of 3 and 2.5 s, respectively) are introduced. Variations of the thermal parameters on thin platinum (2.5-m) foils are measured in a calibration experiment. The thermal properties of the foil can be quantified experimentally by measuring the responses of the foil temperature in the form of the peak change in temperature and thermal time (average of thermal decay and rise times) to a chopped HeNe laser. These measurements are made in 1-cm increments moving in two dimensions across the foil or at 63 separate locations. The imaging bolometers are intended to give images of complex three-dimensional radiative phenomena and ultimately provide the data for one-, two-, and three-dimensional tomographic inversions.