ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B. J. Peterson, S. Yoshimura, E. A. Drapiko, D. C. Seo, N. Ashikawa, J. Miyazawa
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 412-417
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10826
Articles are hosted by Taylor and Francis Online.
Bolometers are a powerful tool for diagnosing plasma radiation in a reactor-relevant environment. Resistive and imaging bolometers have been applied to the Large Helical Device (LHD) to measure radiative phenomena. Installed on LHD are 56 channels of resistive bolometers at four different ports, providing total radiated power measurements and radial profiles with 5-ms temporal resolution. Calibration coefficients are seen to vary slightly year to year. Imaging bolometer foils are installed at four ports. Infrared cameras have been used at some of these ports to provide an image of the foil temperature, which can be analyzed to give an image of the radiated power absorbed by the foil. Upgrades of existing imaging bolometers using platinum foils and more advanced infrared cameras with frame rates of 345 and 420 frames/s (minimum time resolutions of 3 and 2.5 s, respectively) are introduced. Variations of the thermal parameters on thin platinum (2.5-m) foils are measured in a calibration experiment. The thermal properties of the foil can be quantified experimentally by measuring the responses of the foil temperature in the form of the peak change in temperature and thermal time (average of thermal decay and rise times) to a chopped HeNe laser. These measurements are made in 1-cm increments moving in two dimensions across the foil or at 63 separate locations. The imaging bolometers are intended to give images of complex three-dimensional radiative phenomena and ultimately provide the data for one-, two-, and three-dimensional tomographic inversions.