ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
K. Ida, M. Yoshinuma, C. Suzuki, T. Kobuchi, K. Y. Watanabe, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 383-393
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10824
Articles are hosted by Taylor and Francis Online.
Radial profiles of the rotational transform are measured with the motional Stark effect spectroscopy in the Large Helical Device. They are derived from the radial profiles of the polarization angle of the and components in the H line emitted from high-energy hydrogen atoms of beams with four sets of linear polarizers, spectrometers, and charge-coupled device detectors. Changes in the rotational transform due to the neutral beam current drive (NBCD) and the electron cyclotron current drive are measured. When NBCD is in the direction counter to the equivalent plasma current, the central rotational transform increases because of the inductive current while the edge rotational transform decreases, as is expected. Therefore, the magnetic shear becomes weak with NBCD in the counterdirection, whereas it becomes strong with NBCD in the codirection. NBCD that drives toroidal current, typically <10% of the equivalent toroidal current determined by the external current in the helical coils, can change the rotational transform and magnetic shear significantly enough to change magnetohydrodynamic stability.