ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
T. Tokuzawa, K. Kawahata, Y. Nagayama, S. Inagaki, P. C. De Vries, A. Mase, Y. Kogi, Y. Yokota, H. Hojo, K. Tanaka, A. Ejiri, R. O. Pavlichenko, S. Yamaguchi, T. Yoshinaga, D. Kuwahara, Z. Shi, H. Tsuchiya, Y. Ito, S. Hirokura, S. Sudo, A. Komori, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 364-374
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10822
Articles are hosted by Taylor and Francis Online.
Several types of microwave diagnostics, in the category of electron cyclotron emission (ECE) spectroscopy and reflectometry, have been developed on the Large Helical Device (LHD). Since LHD has a complicated magnetic configuration, the polarization effects have been studied for optimization of the microwave passive and active diagnostics. It was found that if the density is sufficiently high, the effect of mode conversion is negligible and the local polarization angle can be estimated as the angle at the plasma boundary. Three types of ECE spectroscopy, which are the heterodyne radiometer, the Michelson spectrometer, and the grating polychromator, have been optimized and operated routinely in order to measure radial profiles of electron temperature and its fluctuations in the frequency range 50 to 500 GHz. Several types of microwave reflectometers have also been utilized for measurements of the electron density profile and fluctuations. Two ultrashort pulsed radar reflectometers for density profile measurements, a V-band frequency-hopping reflectometer for density fluctuation profile measurements, and a fixed-frequency three-channel homodyne reflectometer for the interlock system of the neutral beam injection have been routinely operated. Also, an advanced diagnostic, which uses an imaging technique, has been developed to study the two- or three-dimensional structure of temperature and density fluctuations.