ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Senate committee advances NRC nominee Matthew Marzano
Marzano
The U.S. Senate Environment and Public Works Committee voted 10–9 last week to advance the nomination of Matthew Marzano to serve on the Nuclear Regulatory Commission. It was a party-line vote, with all Democrats supporting Marzano and all Republicans voting “no.”
Marzano was nominated by President Biden in July to fill the open NRC seat, and the EPW Committee held a hearing in September on his nomination. His nomination will now go to the Senate for a vote, but it is not certain whether that will happen before the end of the year, in which case his nomination process would start over in 2025.
The five-member commission has been without a tiebreaker vote since June 2023 when Jeff Baran’s term expired.
T. Tokuzawa, K. Kawahata, Y. Nagayama, S. Inagaki, P. C. De Vries, A. Mase, Y. Kogi, Y. Yokota, H. Hojo, K. Tanaka, A. Ejiri, R. O. Pavlichenko, S. Yamaguchi, T. Yoshinaga, D. Kuwahara, Z. Shi, H. Tsuchiya, Y. Ito, S. Hirokura, S. Sudo, A. Komori, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 364-374
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10822
Articles are hosted by Taylor and Francis Online.
Several types of microwave diagnostics, in the category of electron cyclotron emission (ECE) spectroscopy and reflectometry, have been developed on the Large Helical Device (LHD). Since LHD has a complicated magnetic configuration, the polarization effects have been studied for optimization of the microwave passive and active diagnostics. It was found that if the density is sufficiently high, the effect of mode conversion is negligible and the local polarization angle can be estimated as the angle at the plasma boundary. Three types of ECE spectroscopy, which are the heterodyne radiometer, the Michelson spectrometer, and the grating polychromator, have been optimized and operated routinely in order to measure radial profiles of electron temperature and its fluctuations in the frequency range 50 to 500 GHz. Several types of microwave reflectometers have also been utilized for measurements of the electron density profile and fluctuations. Two ultrashort pulsed radar reflectometers for density profile measurements, a V-band frequency-hopping reflectometer for density fluctuation profile measurements, and a fixed-frequency three-channel homodyne reflectometer for the interlock system of the neutral beam injection have been routinely operated. Also, an advanced diagnostic, which uses an imaging technique, has been developed to study the two- or three-dimensional structure of temperature and density fluctuations.