ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. Akiyama, K. Kawahata, K. Tanaka, T. Tokuzawa, Y. Ito, S. Okajima, K. Nakayama, C. A. Michael, L. N. Vyacheslavov, A. Sanin, S. Tsuji-Iio, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 352-363
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-8
Articles are hosted by Taylor and Francis Online.
This paper describes the interferometer systems on the Large Helical Device (LHD). LHD is equipped with five interferometer systems, each of which has a different operational purpose and measurable electron density range. A single-channel millimeter-wave interferometer is mainly used for low-density plasmas along a horizontal line of sight on the equatorial plane. Wavelengths of 1 and 2 mm are used for vibration compensation based on two-color interferometry, which has been used since the first operation of LHD. A 13-channel CH3OH laser interferometer (wavelength of 119 m) covers almost the whole poloidal cross sections of LHD plasmas with a chord separation of 90 mm. It routinely provides temporal behavior and profiles of the electron density. The laser has been developed as a collaboration between the National Institute for Fusion Science (NIFS) and Chubu University. An 80-channel CO2 laser interferometer (10.6 m) is employed for high-density plasmas such as superdense core plasmas. It adopts an imaging technique with three slablike beams and array detectors to measure the density profile precisely. A phase contrast imaging interferometer, which measures density fluctuations, is combined with the CO2 laser interferometer. Since LHD has strong magnetic shear, a distribution of the density fluctuations is evaluated by using shear technique. A conventional millimeter-wave (4 mm) interferometer is also installed at a divertor region to measure dynamic density responses in a divertor leg. The phase counter used on these interferometers was originally developed at NIFS. The phase resolution of a typical phase counter is 1/100 fringe with a temporal response of 10 s.