ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Senate committee advances NRC nominee Matthew Marzano
Marzano
The U.S. Senate Environment and Public Works Committee voted 10–9 last week to advance the nomination of Matthew Marzano to serve on the Nuclear Regulatory Commission. It was a party-line vote, with all Democrats supporting Marzano and all Republicans voting “no.”
Marzano was nominated by President Biden in July to fill the open NRC seat, and the EPW Committee held a hearing in September on his nomination. His nomination will now go to the Senate for a vote, but it is not certain whether that will happen before the end of the year, in which case his nomination process would start over in 2025.
The five-member commission has been without a tiebreaker vote since June 2023 when Jeff Baran’s term expired.
K. Kawahata, B. J. Peterson, T. Akiyama, N. Ashikawa, M. Emoto, H. Funaba, Y. Hamada, K. Ida, S. Inagaki, T. Ido, M. Isobe, M. Goto, A. Mase, S. Masuzaki, C. Michael, T. Morisaki, S. Morita, S. Muto, Y. Nagayama, Y. Nakamura, H. Nakanishi, R. Sakamoto, K. Narihara, M. Nishiura, S. Ohdachi, S. Okajima, M. Osakabe, S. Sakakibara, A. Sanin, M. Sasao, K. Sato, A. Shimizu, M. Shoji, S. Sudo, N. Tamura, K. Tanaka, K. Toi, T. Tokuzawa, E. V. Veshchev, L. N. Vyacheslavov, I. Yamada, M. Yoshinuma, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 331-344
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10819
Articles are hosted by Taylor and Francis Online.
The Large Helical Device (LHD) is the world's largest heliotron-type device with l = 2, m = 10 continuous superconducting helical coils and three pairs of superconducting poloidal coils. The major and minor radii of the plasma are 3.6 to 3.9 and 0.6 to 0.65 m, respectively. A plasma with an elliptic cross section confined in the helical magnetic field rotates poloidally along the magnetic axis and has no axial symmetry. For the installation of various kinds of diagnostic instruments, large-sized ports are equipped. The diameter of the largest horizontal ports is 2410 mm, which enables us to easily access the full plasma cross section with multichannel viewing chords aligned parallel to one another. For the precise measurement of plasma quantities in a three-dimensional helical plasma, an extensive set of diagnostics has been developed with national and international collaborators and is routinely operated in LHD. The diagnostic system now consists of [approximately]50 measuring instruments and includes many challenging diagnostics that have been developed and operated for the study of LHD plasma confinement. These are classified as profile diagnostics, fluctuation diagnostics, and advanced diagnostics, some of which are selected for introduction in this article. In addition, diagnostics for the divertor and for energetic particles are discussed, along with topics that are somewhat unique to helical devices such as diagnosing three-dimensional phenomena and flux surface mapping. This large number of diagnostics in LHD rely on a data acquisition system that has broken world records for the amount of information accumulated in one shot. Finally, looking to the near future, countermeasures have been taken to protect diagnostics from the neutrons and gamma fluxes anticipated during deuterium-deuterium experiments, such as placing much of the diagnostic instrumentation behind a 2-m-thick concrete biological shield encompassing the LHD test cell.