ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Tokitani, N. Yoshida, M. Miyamoto, T. Hino, Y. Nobuta, S. Masuzaki, N. Ashikawa, A. Sagara, N. Noda, H. Yamada, A. Komori, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 305-320
Chapter 7. Plasmas-Wall Interactions | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10817
Articles are hosted by Taylor and Francis Online.
The Large Helical Device (LHD) has been equipped with movable- and fixed-type material probe systems. Characterization studies of surface modifications on plasma-facing components (PFCs) have been actively progressing by using these probes. After exposure of the PFCs to the plasma, various kinds of surface analysis were conducted. The first walls and divertor tiles of LHD are made of stainless steel and isotropic graphite (IG-430U, Toyo Tanso Co., Ltd.), respectively. They are frequently exposed not only to high-power pulsed main discharges but also to wall-conditioning processes such as glow discharge cleaning (GDC). Thus, the surfaces of the PFCs are drastically changed due to sputtering erosion, impurity deposition, and melting damage. Graphite divertor tiles are eroded primarily during the main discharges; the eroded carbon migrates and deposits on the first-wall surfaces, particularly near the divertor array. First walls are eroded mainly during GDC, which significantly changes the condition of the PFCs. During the main discharges, the majority of incidence particles to the first wall are energetic neutrals (CX neutrals) generated by charge-exchange collisions. Studies of the material damage caused by CX neutrals also have been done. In this paper, the characteristics of surface modifications of PFCs by means of material probe experiments and subsequent surface analysis are summarized.