ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company (TEPCO) began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
S. Masuzaki, N. Ashikawa, K. Nishimura, M. Tokitani, T. Hino, Y. Yamauchi, Y. Nobuta, N. Yoshida, M. Miyamoto, A. Sagara, N. Noda, H. Yamada, A. Komori, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 297-304
Chapter 7. Plasmas-Wall Interactions | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10816
Articles are hosted by Taylor and Francis Online.
Wall conditioning in the Large Helical Device (LHD) has been conducted successively since the first experimental campaign in 1998. The effects of wall conditioning on the vacuum condition, the plasma performance, and the surface modification of the plasma-facing components have been analyzed by both macroscopic and microscopic observations such as residual gas analysis and transmission electron microscope observation, respectively. The main tools for the conditioning are mild baking (95°C); glow discharges with hydrogen, helium, and neon; and wall coating with titanium and boron. Though the baking temperature is lower than in other fusion devices, it reduces impurity gases well just after the start of vacuum pumping, and it reduces retained hydrogen in plasma-facing components during the experimental campaign. Helium glow discharge was revealed to cause heavy damage on the surfaces of metallic components and the contamination of the hydrogen discharges with helium released from wall. Neon glow discharge has been conducted since it causes much less damage and hastens the conditioning of the wall. Boronization is very effective to reduce oxygen impurity in plasma, and the effects last for the whole experimental campaign in LHD.