ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
N. Nakajima, M. Sato, Y. Nakamura, A. Fukuyama, S. Murakami, A. Wakasa, K. Y. Watanabe, S. Toda, H. Yamada
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 289-296
Chapter 6. 3-D Theory | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10815
Articles are hosted by Taylor and Francis Online.
One of the purposes of fusion simulations is to develop a code that could predict the entire temporal behavior of experimentally observed macroscopic physics quantities under continuous external control, which will be used to create the path to helical-type reactor by combining knowledge of reactor design. In this paper an integrated simulation code system for three-dimensional toroidal helical plasmas in the Large Helical Device (LHD) is reported. This code has been developed under the domestic and international research collaborations among universities and institutes. After explaining the structure of the code system, including the transport simulation code TASK3D and the magnetohydrodynamic (MHD) equilibrium and stability code MHD3D, we present typical simulation results: evolution of the rotational transform, MHD stability beta limit, and recent progress in the TASK3D code.