ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Yokoyama, A. Wakasa, S. Murakami, K. Y. Watanabe, S. Satake, S. Nishimura, H. Sugama, N. Nakajima, H. Funaba, Y. Nakamura
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 269-276
Chapter 6. 3-D Theory | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10813
Articles are hosted by Taylor and Francis Online.
This paper reviews how neoclassical (NC) transport analyses have been exploited to predict/understand the improved confinement achieved in the Large Helical Device (LHD), such as high-temperature and/or high-density regimes. Recent high-performance LHD plasmas have provided a good opportunity to test/verify the impact of the radial electric field (Er) for reducing the NC transport in the low-collisionality regime. The bifurcative nature of Er to the electron root was clarified to be the background physics for the improved electron heat confinement in the core region. The ion root has been verified with measurement as predicted from the NC ambipolarity for the high-ion temperature plasmas. The construction of the NC diffusion coefficient database has been advanced for making accurate and fast NC calculations available. The predicted dependence of the bootstrap current on the magnetic configuration has also been experimentally verified. The extension of NC transport theory itself has been greatly motivated by the extension of the plasma parameters. Code development for the inclusion of the finite orbit width effect and the progress of the moment approach are explained as such examples.