ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Kobayashi, Y. Feng, S. Morita, S. Masuzaki, N. Ezumi, T. Kobayashi, M. B. Chowdhuri, H. Yamada, T. Morisaki, N. Ohyabu, M. Goto, I. Yamada, K. Narihara, A. Komori, O. Motojima, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 220-231
Chapter 5. Divertor and Edge Physics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10809
Articles are hosted by Taylor and Francis Online.
Transport characteristics of the stochastic magnetic boundary of the Large Helical Device (LHD) are investigated, based on three-dimensional Monte-Carlo Braginskii-type fluid model code, EMC3, coupled with the kinetic neutral transport code EIRENE, in direct comparison with experimental observations for aspects of the relation between the magnetic topology and the resulting transport in terms of counter acting flux tube flows and impurity screening/transport. Divertor probe measurements show a rather weak divertor parameter dependence on upstream density in contrast to those of tokamaks at high-recycling regime. This is found to be due to the loss of parallel momentum via cross-field interaction between the stochastic flux tubes, where strong flow shear exists. The three-dimensional modeling predicts an impurity screening potential of the stochastic scrape-off layer (SOL) at high densities. The remnant island geometry affects the energy transport, which leads to suppression of the thermal forces by increasing cross-field energy flux across islands at high collisionality. The screening effect is most pronounced at the edge surface layers with a strong friction force exerted by the background plasma flow, where the flow toward divertor is enhanced due to the rich ionization source. Modeling results are compared to the edge carbon emission obtained in experiments, where a reasonable agreement on the density dependence is found, indicating the existence of the impurity screening mechanism in the stochastic SOL of LHD.