ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
M. Shoji, S. Masuzaki, M. Kobayashi, M. Goto, T. Morisaki, H. Yamada, A. Komori, A. Iwamae, A. Sakaue, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 208-219
Chapter 5. Divertor and Edge Physics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-04
Articles are hosted by Taylor and Francis Online.
The function of the divertor plasmas on the particle control in the plasma periphery is investigated from viewpoints of magnetic field line structures and neutral particle transport in the Large Helical Device (LHD). It shows that the particle and heat deposition on the divertor plate arrays are qualitatively explained by the distribution of strike points calculated by magnetic field line tracing including a particle diffusion effect. Control of neutral particle fueling from the divertor plates is a critical issue for sustaining long-pulse discharges and achieving superdense core plasmas. The behavior of neutral particles in the plasma periphery has been investigated by H emission measurements and a neutral particle transport simulation. It reveals that gas fueling from the toroidally distributed divertor plates heated by protons accelerated by ion cyclotron resonance frequency wave is necessary for explaining measurements in a long-pulse discharge, and the spatial profile of the neutral particle density in the plasma periphery in various magnetic configurations is explained by the strike point distribution. Based on these analyses, a closed helical divertor configuration optimized for the intrinsic magnetic field line structure in the plasma periphery is proposed for efficient particle control and heat load reduction on the divertor plates.