ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. Toi, M. Isobe, M. Osakabe, F. Watanabe, K. Ogawa, S. Yamamoto, N. Nakajima, D. A. Spong, K. Ida, T. Ido, T. Ito, S. Morita, K. Nagaoka, K. Narihara, M. Nishiura, S. Ohdachi, S. Sakakibara, A. Shimizu, K. Tanaka, Y. Todo, T. Tokuzawa, A. Weller, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 186-193
Chapter 4. MHD | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10805
Articles are hosted by Taylor and Francis Online.
Energetic ion-driven magnetohydrodynamic instabilities such as Alfvén eigenmodes (AEs), energetic particle modes (EPMs), and their impacts on energetic ion confinement are being studied on the Large Helical Device (LHD). The magnetic configuration of this device is three dimensional and has negative magnetic shear over a whole radial region in the low-beta regime. Two types of toroidicity-induced Alfvén eigenmodes (TAEs) are typically observed in LHD plasmas that are heated by tangential neutral beam injection: One is localized in the plasma core region near a central TAE gap and the other is a global TAE having a radially extended eigenfunction. Core-localized TAEs with even and odd radial mode parities are often observed. The global TAE is usually observed in medium- to high-beta plasmas where broad regions with low magnetic shear are present. Helicity-induced Alfvén eigenmodes (HAEs), which exist in gaps unique to three-dimensional plasmas that have both toroidal and poloidal mode couplings, were detected for the first time. Recently, reversed magnetic shear Alfvén eigenmodes (RSAEs) having characteristic frequency sweeping were discovered in reversed magnetic shear (RS) plasmas produced by intense counter-neutral beam current drive. In the RS plasma, the geodesic acoustic mode (GAM) excited by energetic ions, which is a global-type mode different from localized GAM excited by drift waves, was also detected for the first time in a helical plasma. Nonlinear couplings between RSAE and GAM modes and also between two TAEs were observed. Bursts of TAEs and EPMs often enhance radial transport and loss of energetic ions at low toroidal magnetic field (<0.75 T).