ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
S. Sakakibara, K. Y. Watanabe, S. Ohdachi, Y. Narushima, K. Toi, K. Tanaka, K. Narihara, K. Ida, T. Tokuzawa, K. Kawahata, H. Yamada, A. Komori, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 176-185
Chapter 4. MHD | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10804
Articles are hosted by Taylor and Francis Online.
This paper reviews progress in the study of pressure-driven interchange stability in the Large Helical Device (LHD) for 10 years. When the plasma approaches the boundary of ideal interchange mode, a strong magnetohydrodynamic (MHD) mode appears, leading to a distortion of pressure profile, although no major disruption is caused. The experiments for investigating magnetic shear effects in the magnetic hill configuration indicate that the reduction of magnetic shear leads to a minor collapse due to an excitation of low-order MHD mode. In the high-beta regime of more than 4%, MHD modes excited in the periphery with magnetic hill are observed to dominate, and it was found that the amplitude depends on the magnetic Reynolds number as well as the pressure gradient, which is qualitatively consistent with the prediction of resistive interchange mode. Also, experiments and theory for finding parameter dependence of the onset of the mode indicate that the onset is related to both the magnetic Reynolds number and the stability index of resistive interchange mode.