ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
K. Ida, M. Yoshinuma, K. Tanaka, R. Sakamoto, S. Inagaki, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 150-159
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10802
Articles are hosted by Taylor and Francis Online.
The interlinkage of particle, momentum, and heat transport in plasmas appears as a nondiffusive term of each transport equation. The physical mechanisms determining the diffusive and nondiffusive terms of particle, momentum, and heat transports are described. The nondiffusive term in the particle transport and impurity transport, which causes an inward pinch or outward flux, is driven by the temperature gradient and the magnetic field curvature. One significant piece of evidence of the nondiffusive term of particle transport is observed in the impurity transport as an impurity hole, where the impurity profiles become extremely hollow and the inward flow due to the density gradient is balanced with the outward flow driven by the ion temperature gradients. The outward convection of impurity observed contradicts the neoclassical prediction but is expected to contribute to the purity of plasma in the ion root even if the radial electric field is negative. The nondiffusive term in the momentum transport, which drives spontaneous toroidal rotation, is also observed in the plasmas in the Large Helical Device (LHD). The spontaneous rotations are driven by the electric field near the plasma edge and the ion temperature gradient at the midradius in the plasma. In the heat transport, no clear nondiffusive term is observed, and it is considered to be diffusive. The temperature and temperature gradient dependences of the diffusive terms are studied with the perturbation transport study and the slow transition between two transport branches that have a weak and a strong temperature dependence of thermal diffusivity.