ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
K. Ida, M. Yoshinuma, K. Tanaka, R. Sakamoto, S. Inagaki, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 150-159
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10802
Articles are hosted by Taylor and Francis Online.
The interlinkage of particle, momentum, and heat transport in plasmas appears as a nondiffusive term of each transport equation. The physical mechanisms determining the diffusive and nondiffusive terms of particle, momentum, and heat transports are described. The nondiffusive term in the particle transport and impurity transport, which causes an inward pinch or outward flux, is driven by the temperature gradient and the magnetic field curvature. One significant piece of evidence of the nondiffusive term of particle transport is observed in the impurity transport as an impurity hole, where the impurity profiles become extremely hollow and the inward flow due to the density gradient is balanced with the outward flow driven by the ion temperature gradients. The outward convection of impurity observed contradicts the neoclassical prediction but is expected to contribute to the purity of plasma in the ion root even if the radial electric field is negative. The nondiffusive term in the momentum transport, which drives spontaneous toroidal rotation, is also observed in the plasmas in the Large Helical Device (LHD). The spontaneous rotations are driven by the electric field near the plasma edge and the ion temperature gradient at the midradius in the plasma. In the heat transport, no clear nondiffusive term is observed, and it is considered to be diffusive. The temperature and temperature gradient dependences of the diffusive terms are studied with the perturbation transport study and the slow transition between two transport branches that have a weak and a strong temperature dependence of thermal diffusivity.