ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Solar developer Geenex looks to enter nuclear market
Charlotte, N.C.–based Geenex, a developer of utility-scale solar power and battery storage within the PJM Interconnection, announced on Tuesday that it is expanding into nuclear energy development, focusing on the siting and permitting of advanced small modular reactors.
H. Funaba, K. Y. Watanabe, S. Sakakibara, S. Murakami, I. Yamada, K. Narihara, K. Tanaka, T. Tokuzawa, M. Osakabe, Y. Narushima, M. Yokoyama, S. Ohdachi, Y. Takeiri, H. Yamada, K. Kawahata, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 141-149
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10801
Articles are hosted by Taylor and Francis Online.
The magnetic configuration of the Large Helical Device (LHD) changes with the increment in beta. To distinguish between the beta effect and the configuration effect on the gradual degradation of the global confinement property in the high-beta LHD plasmas, the local transport characteristics are studied by considering the change in the major radius of the magnetic flux surface with the beta value. A model transport coefficient that has the same nondimensional parameter dependence as the international stellarator scaling 2004 (ISS04) is introduced and used as the reference. The dependence of the local transport characteristics in high-beta plasmas on the major radial position of a geometric center of the magnetic flux surface is compared with that in low-beta plasmas. The dependence of the local transport in the peripheral region is correlated more with beta itself than the magnetic configuration effect, whereas the core transport appears to be correlated more with the configuration effect. The comparison of the experimental transport coefficients and the calculation results shows that the resistive pressure gradient-driven turbulence can be considered as one of the causes of this degradation.