ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
H. Funaba, K. Y. Watanabe, S. Sakakibara, S. Murakami, I. Yamada, K. Narihara, K. Tanaka, T. Tokuzawa, M. Osakabe, Y. Narushima, M. Yokoyama, S. Ohdachi, Y. Takeiri, H. Yamada, K. Kawahata, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 141-149
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10801
Articles are hosted by Taylor and Francis Online.
The magnetic configuration of the Large Helical Device (LHD) changes with the increment in beta. To distinguish between the beta effect and the configuration effect on the gradual degradation of the global confinement property in the high-beta LHD plasmas, the local transport characteristics are studied by considering the change in the major radius of the magnetic flux surface with the beta value. A model transport coefficient that has the same nondimensional parameter dependence as the international stellarator scaling 2004 (ISS04) is introduced and used as the reference. The dependence of the local transport characteristics in high-beta plasmas on the major radial position of a geometric center of the magnetic flux surface is compared with that in low-beta plasmas. The dependence of the local transport in the peripheral region is correlated more with beta itself than the magnetic configuration effect, whereas the core transport appears to be correlated more with the configuration effect. The comparison of the experimental transport coefficients and the calculation results shows that the resistive pressure gradient-driven turbulence can be considered as one of the causes of this degradation.