ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Bongju Lee, Neil Pomphrey, Lang L. Lao
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 278-288
Technical Paper | doi.org/10.13182/FST99-A108
Articles are hosted by Taylor and Francis Online.
The Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak will have superconducting magnets for both the poloidal field (PF) coils and the toroidal field (TF) coils. The physical arrangement of the PF configuration has 14 coils external to the TF coils. The analysis of the equilibrium flexibility of the KSTAR PF system determines the coil currents required to maintain prescribed equilibrium configurations over the desired range of operational parameters specified for Ip (q95), N, and li(3). Constraints on the plasma separatrix and the flux linkage through the geometric center of the plasma are specified for the free-boundary equilibrium calculations. The ripple magnitude due to the finite number of TF coils and the size of the port for the neutral beam (NB) injector determine the number, size, and shape of TF coils. Two ripple criteria for a shaped plasma are used for types of ripple transport. The current design of the TF coil, with 16 coils and a D shape, is big enough to satisfy requirements for the ripple magnitude at the plasma and to provide adequate access for tangential NB injection. The external magnetic diagnostics, magnetic probes and flux loops to detect the plasma boundary are designed by the EFIT code, which uses a realistic distributed current source constrained by equilibrium. The proposed configuration with 52 full toroidal flux loops and 78 magnetic probes results in <0.7 cm deviation at critical points, with the Gaussian-distributed 3% random root-mean-square perturbation in the signal.