ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
K. Ida, S. Inagaki, M. Yoshinuma, N. Tamura, T. Morisaki, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 113-121
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10798
Articles are hosted by Taylor and Francis Online.
Radial profiles of the space potential are measured at the n/m = 1/1 magnetic island produced by external perturbation coils in the Large Helical Device (LHD). Both the temperature and space potential are flat inside the magnetic island, and the large radial electric field shear appears at the boundary of the magnetic island because the radial electric field is zero inside the magnetic island. However, when the width of the magnetic island becomes large, the space potential profile becomes peaked because of the convective flow along the magnetic flux surface inside the magnetic island around the O point. The appearance of the convective flow suggests that the perpendicular viscosity is significantly reduced inside the magnetic island. The perturbation transport study using the cold-pulse propagation is a useful tool to study the transport inside the magnetic island, where the temperature gradient is zero in the steady state. Inside the magnetic island, the cold-pulse propagates slowly from the boundary toward the center, and radial profiles of the delay time are peaked at the magnetic island. The large delay time (slow pulse propagation) indicates that the thermal diffusivity is even small inside the magnetic island. These experimental results indicate that the heat and momentum transport are significantly improved inside the magnetic island although the temperature and flow gradients are zero due to the lack of heat and momentum fluxes.