ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
K. Toi, F. Watanabe, S. Ohdachi, S. Morita, X. Gao, K. Narihara, S. Sakakibara, K. Tanaka, T. Tokuzawa, H. Urano, A. Weller, I. Yamada, L. Yan, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 61-69
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10794
Articles are hosted by Taylor and Francis Online.
The L-H transition was observed in a unique helical divertor configuration where the core plasma is surrounded by ergodic layer, exhibiting rapid increase in edge electron density with sudden depression of H emission. Just after the transition, edge transport barrier (ETB) is formed at the plasma edge in the magnetic hill region, developing a steep density gradient. ETB region extends in ergodic layer beyond the last closed flux surface defined by the vacuum field. The transition occurs in relatively high beta plasmas when neutral beam absorbed power (Pabs) exceeds one to three times the ITER H-mode power threshold. Improvement of energy confinement time is modest (<1.1) for the ISS95 international stellarator scaling, whereas the particle confinement is clearly improved. The ETB width tends to increase with the increase in the toroidal beta at the ETB shoulder. ETB formation leads to destabilization of edge magnetohydrodynamic (MHD) modes with m/n = 2/3 or 1/2 (m and n being the poloidal and toroidal mode numbers) in ETB region of the inward-shifted configurations. Edge-localized modes (ELMs) are excited by these edge MHD modes through nonlinear evolution. Sometimes in outward-shifted plasmas, edge MHD modes are clearly suppressed in the H-phase and lead to an ELM-free H-mode. When large m/n = 1/1 resonant magnetic perturbations are applied to neutral beam injection-heated plasmas, the transition takes place at lower line-averaged electron density having the modest increase in electron temperature and small-amplitude ELMs.