ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
T. Shimozuma, M. Yokoyama, K. Ida, Y. Takeiri, S. Kubo, S. Murakami, A. Wakasa, H. Idei, Y. Yoshimura, T. Notake, S. Inagaki, N. Tamura, K. Toi, N. Ohyabu, M. Osakabe, K. Ikeda, K. Tsumori, Y. Oka, K. Nagaoka, O. Kaneko, I. Yamada, K. Narihara, Y. Nagayama, S. Muto, K. Tanaka, T. Tokuzawa, S. Morita, M. Goto, M. Yoshinuma, H. Funaba, T. Morisaki, K. Y. Watanabe, J. Miyazawa, T. Mutoh, T. Watari, K. Ohkubo, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 38-45
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10791
Articles are hosted by Taylor and Francis Online.
Core electron-root confinement (CERC), observed in the Large Helical Device as well as in other helical devices, is an improved electron energy confinement mode. It is characterized by a highly peaked electron temperature profile in the core region and appears when the centrally focused electron cyclotron resonance heating power exceeds a certain threshold value. This threshold value has been clarified to associate with the transition of the radial electric field (Er) from the ion root (small negative value) to the electron root (large positive value greater than a few kV/m), based on the bifurcation nature of Er due to the ambipolarity condition of neoclassical transport fluxes that is specific in nonaxisymmetric configurations. It has been experimentally recognized that a steeper Te gradient is realized with a clear transition (power threshold nature) in target plasmas with counter neutral beam injection (NBI) than ones with codirectional NBI. It has been interpreted, based on the heat pulse propagation experiment, to be related to the rational surface or the island induced by the NBI-driven current. Transport analyses have shown that the incremental thermal diffusivity of electron heat transport becomes lower, and the standard thermal diffusivity decreases with the increase of heating power in CERC plasmas.