ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
D. R. Harding, T. C. Sangster, D. D. Meyerhofer, P. W. McKenty, L. D. Lund, L. Elasky, M. D. Wittman, W. Seka, S. J. Loucks, R. Janezic, T. H. Hinterman, D. H. Edgell, D. Jacobs-Perkins, R. Q. Gram
Fusion Science and Technology | Volume 48 | Number 3 | November 2005 | Pages 1299-1306
Technical Paper | doi.org/10.13182/FST05-A1079
Articles are hosted by Taylor and Francis Online.
The OMEGA cryogenic target handling system provides deuterium-filled cryogenic targets for direct-drive implosion experiments. The targets are 0.9 mm in diameter with a 3-m-thick outer plastic ablator and an inner ice layer that ranges from 80 to 100 m thick. The smoothest ice layer possessed an average root-mean-square (rms) roughness of 1.2 m, although values ranging from 2 to 4 m are more typical. Implosion experiments achieved a maximum yield of 2.11 × 1011 primary neutrons (70% of the clean one-dimensional yield) with an average areal density of 50 mg/cm2 with a 1-ns square, high-adiabat ( = 25) laser pulse. Lower yields (1 × 1010 primary neutrons) and higher areal densities (88 mg/cm2) were obtained using a lower-adiabat ( = 4) laser pulse. Better performance is expected once smoother ice layers (better than 2-m average rms roughness) are positioned within 10 m of where the laser beams are pointed. Currently, the offset between the target's location and where the laser beams are pointing at the moment of implosion is 14 to 60 m.