ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DOE seeks proposals for AI data centers at Paducah
The Department of Energy’s Office of Environmental Management has issued a request for offer (RFO) seeking proposals from U.S. companies to build and power AI data centers on the DOE’s Paducah Site in Kentucky. Companies are being sought to potentially enter into one or more long-term leasing agreements at the site that would be solely funded by the applicants.
D. R. Harding, T. C. Sangster, D. D. Meyerhofer, P. W. McKenty, L. D. Lund, L. Elasky, M. D. Wittman, W. Seka, S. J. Loucks, R. Janezic, T. H. Hinterman, D. H. Edgell, D. Jacobs-Perkins, R. Q. Gram
Fusion Science and Technology | Volume 48 | Number 3 | November 2005 | Pages 1299-1306
Technical Paper | doi.org/10.13182/FST05-A1079
Articles are hosted by Taylor and Francis Online.
The OMEGA cryogenic target handling system provides deuterium-filled cryogenic targets for direct-drive implosion experiments. The targets are 0.9 mm in diameter with a 3-m-thick outer plastic ablator and an inner ice layer that ranges from 80 to 100 m thick. The smoothest ice layer possessed an average root-mean-square (rms) roughness of 1.2 m, although values ranging from 2 to 4 m are more typical. Implosion experiments achieved a maximum yield of 2.11 × 1011 primary neutrons (70% of the clean one-dimensional yield) with an average areal density of 50 mg/cm2 with a 1-ns square, high-adiabat ( = 25) laser pulse. Lower yields (1 × 1010 primary neutrons) and higher areal densities (88 mg/cm2) were obtained using a lower-adiabat ( = 4) laser pulse. Better performance is expected once smoother ice layers (better than 2-m average rms roughness) are positioned within 10 m of where the laser beams are pointed. Currently, the offset between the target's location and where the laser beams are pointing at the moment of implosion is 14 to 60 m.