ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. Yamada, K. Kawahata, T. Mutoh, N. Ohyabu, Y. Takeiri, S. Imagawa, K. Ida, T. Mito, Y. Nagayama, T. Shimozuma, K. Y. Watanabe, M. Kobayashi, R. Kumazawa, S. Masuzaki, T. Morisaki, J. Miyazawa, K. Nagaoka, Y. Narushima, S. Sakakibara, R. Sakamoto, K. Toi, M. Yokoyama, O. Kaneko, A. Komori, O. Motojima, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 12-28
Chapter 2. LHD Progress | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10789
Articles are hosted by Taylor and Francis Online.
Progress in the integrated development of the helical system in the Large Helical Device (LHD) is described in this paper. Understanding of net current-free plasmas has been deepened in the extended operational regime. Geometrical optimization based on neoclassical theory has revealed that good confinement, equivalent to the tokamak H-mode, can be obtained in the collisionless regime. This approach has also demonstrated that anomalous transport is reduced simultaneously, which poses a working hypothesis that optimization of neoclassical transport suppresses turbulent anomalous transport as well. With regard to the magnetohydrodynamic instability, LHD has discovered that interchange instability is benign in the magnetic hill. These two findings have produced a synergistic effect on the enhancement of confinement and plasma . Remarkable proof of the advantage of helical systems can be seen in very high density operation, which is not accessible in tokamaks. Abundant integrated knowledge about three-dimensional physics has been extracted from these achievements. This progress is important in the assessment of the potential of a helical fusion reactor and makes a significant complementary contribution to tokamaks as well.