ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Z. Yao, C. Liu, P. Jung
Fusion Science and Technology | Volume 48 | Number 3 | November 2005 | Pages 1285-1291
Technical Paper | doi.org/10.13182/FST05-A1077
Articles are hosted by Taylor and Francis Online.
Permeability, diffusivity, and solubility of deuterium in the low-activation martensitic stainless steel EUROFER97 were derived from measurements of gas permeation in the transient and steady-state regimes at temperatures from 100 to 350°C and at pressures from 2 × 103 to 2 × 105 Pa. The specimens were used in four conditions to investigate the effect of irradiation-induced defects: standard annealed condition, preirradiated with protons, implanted with helium, and implanted plus annealed to produce helium bubbles. In general, displacement defects as well as implanted helium tend to decrease permeation and diffusivity. Permeation and diffusion measurements were also performed under simultaneous irradiation, showing no net effect if the slight temperature increase due to irradiation is taken into account. Diffusion measurement of implanted hydrogen gave equal or slightly lower values than gas permeation, which is in qualitative agreement with results from preirradiated specimens. Trapping parameters are derived by a detailed comparison to a saturable-trap model. Results are compared to previous studies on 7%Cr F82H and 11%Cr MANET-II steels, and effects of compositional variations are indicated.