ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
N. Takeuchi, T. Seki, K. Saito, T. Watari, R. Kumazawa, T. Mutoh, Y. Torii, G. Nomura, A. Kato, F. Shimpo, Y. Takase, H. Kasahara, T. Taniguchi, H. Wada, N. Kasuya, K. Yamagishi, C. P. Moeller, M. Saigusa, Z. Yanping
Fusion Science and Technology | Volume 48 | Number 3 | November 2005 | Pages 1267-1284
Technical Paper | doi.org/10.13182/FST05-A1076
Articles are hosted by Taylor and Francis Online.
A novel stacked combline antenna was fabricated for driving plasma current in order to control the rotational transform profile in the Large Helical Device. The antenna has ten elements facilitating excitation of fast-wave traveling in the toroidal direction.Each antenna element has an electrical length of a half-wavelength and is supported at the midpoint from the back plate by a metallic block. Such an antenna has two modes: even and odd. A mixed excitation of these modes will reduce the current drive efficiency. The electrical properties of this antenna were studied in an attempt to find ways of exciting a traveling wave of pure even mode. A matching section was used in combination and proved to be a good measure to improve the directionality over that of a bare combline antenna. It is confirmed in this paper that the fabricated real antenna has fairly good even-mode purity keeping the odd-mode intensity at a tolerable level. An antenna with insulating supports instead of the metallic supports is also examined, and it is found that even-mode purity is further improved. For practical uses, an entire system including impedance matching and power circulation is proposed, and sensitivity to a change in plasma loading is analyzed. Finally, the power-handling capability is discussed including estimations of plasma loading and driven current reaching an assertion of consistency with the experimental goal.