ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
N. Takeuchi, T. Seki, K. Saito, T. Watari, R. Kumazawa, T. Mutoh, Y. Torii, G. Nomura, A. Kato, F. Shimpo, Y. Takase, H. Kasahara, T. Taniguchi, H. Wada, N. Kasuya, K. Yamagishi, C. P. Moeller, M. Saigusa, Z. Yanping
Fusion Science and Technology | Volume 48 | Number 3 | November 2005 | Pages 1267-1284
Technical Paper | doi.org/10.13182/FST05-A1076
Articles are hosted by Taylor and Francis Online.
A novel stacked combline antenna was fabricated for driving plasma current in order to control the rotational transform profile in the Large Helical Device. The antenna has ten elements facilitating excitation of fast-wave traveling in the toroidal direction.Each antenna element has an electrical length of a half-wavelength and is supported at the midpoint from the back plate by a metallic block. Such an antenna has two modes: even and odd. A mixed excitation of these modes will reduce the current drive efficiency. The electrical properties of this antenna were studied in an attempt to find ways of exciting a traveling wave of pure even mode. A matching section was used in combination and proved to be a good measure to improve the directionality over that of a bare combline antenna. It is confirmed in this paper that the fabricated real antenna has fairly good even-mode purity keeping the odd-mode intensity at a tolerable level. An antenna with insulating supports instead of the metallic supports is also examined, and it is found that even-mode purity is further improved. For practical uses, an entire system including impedance matching and power circulation is proposed, and sensitivity to a change in plasma loading is analyzed. Finally, the power-handling capability is discussed including estimations of plasma loading and driven current reaching an assertion of consistency with the experimental goal.