ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
D. A. Humphreys, R. D. Deranian, J. R. Ferron, A. W. Hyatt, R. D. Johnson, R. R. Khayrutdinov, R. J. La Haye, J. A. Leuer, B. G. Penaflor, J. T. Scoville, M. L. Walker, A. S. Welander
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1249-1263
Technical Paper | DIII-D Tokamak - Technologies for Next-Step Devices | doi.org/10.13182/FST05-A1075
Articles are hosted by Taylor and Francis Online.
The integrated plasma control approach provides a systematic method for designing plasma control algorithms with high reliability and for confirming their performance off-line prior to experimental implementation. This approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers that operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance. Using this approach, required levels of robustness to model uncertainties and off-normal events can be quantified and incorporated in the design process. The DIII-D digital plasma control system (PCS) enables application of this method by providing a flexible programming environment and an architecture for real-time parallel operation of a set of computers that executes the large set of control algorithms needed for exploration of the advanced tokamak regime. The present work describes the DIII-D PCS and the approach, benefits, and progress made in integrated plasma control as applied to the DIII-D tokamak, with implications for the International Thermonuclear Experimental Reactor design and other next-generation tokamaks.