ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
D. A. Humphreys, R. D. Deranian, J. R. Ferron, A. W. Hyatt, R. D. Johnson, R. R. Khayrutdinov, R. J. La Haye, J. A. Leuer, B. G. Penaflor, J. T. Scoville, M. L. Walker, A. S. Welander
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1249-1263
Technical Paper | DIII-D Tokamak - Technologies for Next-Step Devices | doi.org/10.13182/FST05-A1075
Articles are hosted by Taylor and Francis Online.
The integrated plasma control approach provides a systematic method for designing plasma control algorithms with high reliability and for confirming their performance off-line prior to experimental implementation. This approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers that operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance. Using this approach, required levels of robustness to model uncertainties and off-normal events can be quantified and incorporated in the design process. The DIII-D digital plasma control system (PCS) enables application of this method by providing a flexible programming environment and an architecture for real-time parallel operation of a set of computers that executes the large set of control algorithms needed for exploration of the advanced tokamak regime. The present work describes the DIII-D PCS and the approach, benefits, and progress made in integrated plasma control as applied to the DIII-D tokamak, with implications for the International Thermonuclear Experimental Reactor design and other next-generation tokamaks.