ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. A. Humphreys, R. D. Deranian, J. R. Ferron, A. W. Hyatt, R. D. Johnson, R. R. Khayrutdinov, R. J. La Haye, J. A. Leuer, B. G. Penaflor, J. T. Scoville, M. L. Walker, A. S. Welander
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1249-1263
Technical Paper | DIII-D Tokamak - Technologies for Next-Step Devices | doi.org/10.13182/FST05-A1075
Articles are hosted by Taylor and Francis Online.
The integrated plasma control approach provides a systematic method for designing plasma control algorithms with high reliability and for confirming their performance off-line prior to experimental implementation. This approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers that operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance. Using this approach, required levels of robustness to model uncertainties and off-normal events can be quantified and incorporated in the design process. The DIII-D digital plasma control system (PCS) enables application of this method by providing a flexible programming environment and an architecture for real-time parallel operation of a set of computers that executes the large set of control algorithms needed for exploration of the advanced tokamak regime. The present work describes the DIII-D PCS and the approach, benefits, and progress made in integrated plasma control as applied to the DIII-D tokamak, with implications for the International Thermonuclear Experimental Reactor design and other next-generation tokamaks.