ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
D. A. Humphreys, R. D. Deranian, J. R. Ferron, A. W. Hyatt, R. D. Johnson, R. R. Khayrutdinov, R. J. La Haye, J. A. Leuer, B. G. Penaflor, J. T. Scoville, M. L. Walker, A. S. Welander
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1249-1263
Technical Paper | DIII-D Tokamak - Technologies for Next-Step Devices | doi.org/10.13182/FST05-A1075
Articles are hosted by Taylor and Francis Online.
The integrated plasma control approach provides a systematic method for designing plasma control algorithms with high reliability and for confirming their performance off-line prior to experimental implementation. This approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers that operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance. Using this approach, required levels of robustness to model uncertainties and off-normal events can be quantified and incorporated in the design process. The DIII-D digital plasma control system (PCS) enables application of this method by providing a flexible programming environment and an architecture for real-time parallel operation of a set of computers that executes the large set of control algorithms needed for exploration of the advanced tokamak regime. The present work describes the DIII-D PCS and the approach, benefits, and progress made in integrated plasma control as applied to the DIII-D tokamak, with implications for the International Thermonuclear Experimental Reactor design and other next-generation tokamaks.