ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
John Lohr, Y. A. Gorelov, K. Kajiwara, Dan Ponce, R. W. Callis, J. L. Doane, R. L. Ellis, H. J. Grunloh, C. P. Moeller, J. Peavey, R. Prater, J. F. Tooker
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1226-1237
Technical Paper | DIII-D Tokamak - Technologies for Next-Step Devices | doi.org/10.13182/FST05-A1073
Articles are hosted by Taylor and Francis Online.
In the DIII-D electron heating and current drive installation, up to six gyrotron microwave generators in the 1-MW class at pulse lengths up to 5 s have been operated simultaneously. The frequency for all the gyrotrons is 110 GHz, corresponding to the second harmonic of the electron gyrofrequency at 2 T. The peak generated power has been >4 MW with peak injected power slightly greater than 3 MW. The radio frequency (rf) generators are located remotely and are connected to the tokamak by up to 100 m of evacuated circular corrugated waveguide carrying the HE1,1 mode with overall transmission efficiency, including coupling to the waveguide, of up to 75%. Ancillary equipment for polarization control, beam switching, power monitoring, control of launch direction, and system protection has been developed.The system has been used to support a wide variety of physics experiments, including control of magnetohydrodynamic modes, current density profile modifications, basic plasma heating and current drive, transport studies, and rf-assisted start-up. The gyrotron complex is being upgraded by the acquisition of additional tubes with 5- to 10-s pulse length capability.