ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. R. Wade, T. C. Luce, J. Jayakumar, P. A. Politzer, C. C. Petty, M. Murakami, J. R. Ferron, A. W. Hyatt, A. C. C. Sips
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1199-1211
Technical Paper | DIII-D Tokamak - Advanced Tokamak Scenarios | doi.org/10.13182/FST05-A1071
Articles are hosted by Taylor and Francis Online.
Experiments in the DIII-D tokamak have demonstrated the ability to sustain ELMing H-mode discharges with high beta and good confinement quality under stationary conditions. These experiments have shown the ability to sustain normalized fusion performance (in terms of NH89P /q952) at or above that projected for Qfus = 10 operation in the International Thermonuclear Experimental Reactor (ITER) design over a wide range in operating parameters. In the best cases, operation is maintained at the free boundary, n = 1 stability limit. Confinement is found to be better than standard H-mode confinement scalings over a wide range in operation space, and experimentally measured transport is consistent with predictions from the GLF23 transport code. Projections using the standard ITER H-mode scaling laws based on these discharges indicate that Qfus = 5 can be maintained for >5400 s in ITER at q95 = 4.5 while Qfus = 40 can be obtained for ~2400 s at q95 = 3.2. These projected performance levels further validate the ITER design and suggest that long-pulse, high neutron fluence operation as well as very high fusion gain operation may be possible in next-generation tokamaks.