ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. M. Greenfield
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1178-1198
Technical Paper | DIII-D Tokamak - Advanced Tokamak Scenarios | doi.org/10.13182/FST05-A1070
Articles are hosted by Taylor and Francis Online.
Research in DIII-D places a major emphasis on developing a scientific basis for high-performance steady-state operation for use in burning plasma tokamaks. This work has resulted in a long history of studies of high-performance regimes. Several of these regimes are described. H-mode, the first high-performance regime, is characterized by the formation of a transport barrier in the boundary region. The VH- and QH-modes, both variations of the H-mode, were both first identified through pioneering work on DIII-D. Although internal transport barriers (ITBs) had been observed previously, advanced diagnostics implemented on DIII-D and elsewhere allowed the physics of these phenomena to be elucidated. This work led to the combination of a VH-mode edge and an ITB core, which exhibits the highest fusion performance obtained in DIII-D. ITBs can also be combined with the QH-mode edge to produce the quiescent double barrier regime, characterized by nearly stationary high-performance plasmas. Like the ITB, high-li plasmas also exhibit performance improvements deeper in the core, in this case due to increased poloidal magnetic field. Although many of these regimes exhibit high-fusion performance only transiently, they provide important platforms for developing an understanding of the physics of transport and magnetohydrodynamic stability and provide the basis for extending to longer duration and evaluating compatibility with steady state.