ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
C. M. Greenfield
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1178-1198
Technical Paper | DIII-D Tokamak - Advanced Tokamak Scenarios | doi.org/10.13182/FST05-A1070
Articles are hosted by Taylor and Francis Online.
Research in DIII-D places a major emphasis on developing a scientific basis for high-performance steady-state operation for use in burning plasma tokamaks. This work has resulted in a long history of studies of high-performance regimes. Several of these regimes are described. H-mode, the first high-performance regime, is characterized by the formation of a transport barrier in the boundary region. The VH- and QH-modes, both variations of the H-mode, were both first identified through pioneering work on DIII-D. Although internal transport barriers (ITBs) had been observed previously, advanced diagnostics implemented on DIII-D and elsewhere allowed the physics of these phenomena to be elucidated. This work led to the combination of a VH-mode edge and an ITB core, which exhibits the highest fusion performance obtained in DIII-D. ITBs can also be combined with the QH-mode edge to produce the quiescent double barrier regime, characterized by nearly stationary high-performance plasmas. Like the ITB, high-li plasmas also exhibit performance improvements deeper in the core, in this case due to increased poloidal magnetic field. Although many of these regimes exhibit high-fusion performance only transiently, they provide important platforms for developing an understanding of the physics of transport and magnetohydrodynamic stability and provide the basis for extending to longer duration and evaluating compatibility with steady state.