ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Marco Ariola, Alfredo Pironti, Alfredo Portone
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 263-277
Technical Paper | doi.org/10.13182/FST99-A107
Articles are hosted by Taylor and Francis Online.
The problem of designing a plasma current and shape control system for a tokamak is dealt with, and a complete framework based on a validated linearized plasma model is developed. Starting from the equilibrium configurations to control and given the required performance, a procedure for choosing the parameters to control is outlined. Then, a method is proposed to evaluate the best performance one could ever expect from a control system, given the actual limitations due to the power supply. A procedure for designing a linear controller is described. The use of a modern multivariable technique, such as the H theory, allows one to take into account the many existing constraints and to find a trade-off among performance, robustness, and control effort. The methodology proposed is general and can be applied in principle to any tokamak plant. The simulation results refer to the International Thermonuclear Experimental Reactor (ITER) tokamak. A controller designed following almost the same steps has been successfully tested on an existing tokamak.