ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Marco Ariola, Alfredo Pironti, Alfredo Portone
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 263-277
Technical Paper | doi.org/10.13182/FST99-A107
Articles are hosted by Taylor and Francis Online.
The problem of designing a plasma current and shape control system for a tokamak is dealt with, and a complete framework based on a validated linearized plasma model is developed. Starting from the equilibrium configurations to control and given the required performance, a procedure for choosing the parameters to control is outlined. Then, a method is proposed to evaluate the best performance one could ever expect from a control system, given the actual limitations due to the power supply. A procedure for designing a linear controller is described. The use of a modern multivariable technique, such as the H theory, allows one to take into account the many existing constraints and to find a trade-off among performance, robustness, and control effort. The methodology proposed is general and can be applied in principle to any tokamak plant. The simulation results refer to the International Thermonuclear Experimental Reactor (ITER) tokamak. A controller designed following almost the same steps has been successfully tested on an existing tokamak.