ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
P. A. Politzer
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1170-1177
Technical Paper | DIII-D Tokamak - Radio-Frequency Heating and Current Drive | doi.org/10.13182/FST05-A1069
Articles are hosted by Taylor and Francis Online.
Noninductive current drive is an essential part of the implementation of the DIII-D Advanced Tokamak program. For an efficient steady-state tokamak reactor, the plasma must provide close to 100% bootstrap fraction (fbs). For noninductive operation of DIII-D, current drive by injection of energetic neutral beams [neutral beam current drive (NBCD)] is also important. DIII-D experiments have reached ~80% bootstrap current in stationary discharges without inductive current drive. The remaining current is ~20% NBCD. This is achieved at N [approximately equal to] p > 3, but at relatively high q95 (~10). In lower q95 Advanced Tokamak plasmas, fbs ~ 0.6 has been reached in essentially noninductive plasmas. The phenomenology of high p and N plasmas without current control is being studied. These plasmas display a relaxation oscillation involving repetitive formation and collapse of an internal transport barrier. The frequency and severity of these events increase with increasing , limiting the achievable average and causing modulation of the total current as well as the pressure. Modeling of both bootstrap and NBCD currents is based on neoclassical theory. Measurements of the total bootstrap and NBCD current agree with calculations. A recent experiment based on the evolution of the transient voltage profile after an L-H transition shows that the more recent bootstrap current models accurately describe the plasma behavior. The profiles and the parametric dependences of the local neutral beam-driven current density have not yet been compared with theory.