ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
A. W. Leonard for the DIII-D Divertor Team
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1083-1095
Technical Paper | DIII-D Tokamak - Plasma Heat and Particle Exhaust | doi.org/10.13182/FST05-A1062
Articles are hosted by Taylor and Francis Online.
Divertor heat flux characterization and control results from DIII-D are summarized. The peak divertor heat flux is found to scale with a simple conduction model having perpendicular transport scaling with plasma current and heating power. In a double-null configuration, the heat flux sharing between divertors is very sensitive to the magnetic balance. Heat flux control in H-mode with edge-localized modes (ELMs) is obtained with deuterium gas puffing resulting in a partially detached divertor (PDD) regime. Important physical processes in the PDD regime include radiation from the intrinsic carbon impurity and deuterium, loss of electron pressure near the separatrix, parallel energy transport in the divertor dominated by convection, and particle flux reduction from deuterium recombination. Divertor neutral pressure is found to be an important control parameter to maintain the PDD regime. Divertor heat flux reduction is also obtained with impurity injection. In one approach divertor radiation is enhanced using induced scrape-off-layer flow to enrich divertor impurity concentration. Another approach uses seeded impurities to produce radiation inside the separatrix in a radiating mantle configuration. Observations of heat flux transients from ELMs and disruptions are summarized. Finally, the implications of these results for next-generation tokamaks are discussed.