ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
M. A. Mahdavi, S. L. Allen, M. E. Fenstermacher, R. Maingi, M. J. Schaffer, R. D. Stambaugh, M. R. Wade
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1072-1082
Technical Paper | DIII-D Tokamak - Plasma Heat and Particle Exhaust | doi.org/10.13182/FST05-A1061
Articles are hosted by Taylor and Francis Online.
The pioneering research on the Doublet-III (DIII) tokamak and its upgrade the DIII-D has contributed significantly to understanding of the physics of divertor plasmas and the development of the modern poloidal divertor. The earliest experimental investigations of the "class of open divertors" were carried out on DIII and DIII-D tokamaks. Divertor advances on these devices include the discoveries of the "high-recycling regime" and divertor impurity enrichment via induced scrape-off-layer flow. Density control was achieved, and high-confinement modes were discovered with the aid of an innovative in-vessel cryopump. In this paper, we present a review of research and development on the DIII and DIII-D tokamaks that has contributed to the development of the modern poloidal divertor, emphasizing the aspects that are of importance to the next-generation tokamak devices.