ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. A. Mahdavi, S. L. Allen, M. E. Fenstermacher, R. Maingi, M. J. Schaffer, R. D. Stambaugh, M. R. Wade
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1072-1082
Technical Paper | DIII-D Tokamak - Plasma Heat and Particle Exhaust | doi.org/10.13182/FST05-A1061
Articles are hosted by Taylor and Francis Online.
The pioneering research on the Doublet-III (DIII) tokamak and its upgrade the DIII-D has contributed significantly to understanding of the physics of divertor plasmas and the development of the modern poloidal divertor. The earliest experimental investigations of the "class of open divertors" were carried out on DIII and DIII-D tokamaks. Divertor advances on these devices include the discoveries of the "high-recycling regime" and divertor impurity enrichment via induced scrape-off-layer flow. Density control was achieved, and high-confinement modes were discovered with the aid of an innovative in-vessel cryopump. In this paper, we present a review of research and development on the DIII and DIII-D tokamaks that has contributed to the development of the modern poloidal divertor, emphasizing the aspects that are of importance to the next-generation tokamak devices.