ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
J. E. Kinsey
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1060-1071
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1060
Articles are hosted by Taylor and Francis Online.
During the past decade, there has been significant progress made in our predictive understanding of turbulent transport in tokamaks. Theoretical advances have led to the development of comprehensive theoretical transport models based on drift wave physics. This paper summarizes the development of the GLF23 drift wave transport model, its application to modeling of DIII-D experiments, and burning plasma projections. The model predicts the transport due to ion temperature gradient, trapped electron, and electron temperature gradient modes and includes the effects of E × B shear flow and Shafranov shift stabilization. GLF23 has been successful in predicting the core profiles in a wide variety of discharges. Examples of published results are given along with a discussion of some outstanding physics issues.