ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
J. E. Kinsey
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1060-1071
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1060
Articles are hosted by Taylor and Francis Online.
During the past decade, there has been significant progress made in our predictive understanding of turbulent transport in tokamaks. Theoretical advances have led to the development of comprehensive theoretical transport models based on drift wave physics. This paper summarizes the development of the GLF23 drift wave transport model, its application to modeling of DIII-D experiments, and burning plasma projections. The model predicts the transport due to ion temperature gradient, trapped electron, and electron temperature gradient modes and includes the effects of E × B shear flow and Shafranov shift stabilization. GLF23 has been successful in predicting the core profiles in a wide variety of discharges. Examples of published results are given along with a discussion of some outstanding physics issues.