ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Asad Majid
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 247-262
Technical Paper | doi.org/10.13182/FST99-A106
Articles are hosted by Taylor and Francis Online.
Liquid-metal flow in the presence of a transverse magnetic field and gravity field was analyzed in a square-cross-section straight duct and a curved bend. The duct had conducting vanadium walls, and lithium coolant was used. Magnetohydrodynamic (MHD) equations with gravity field in three dimensions were developed in the modified toroidal coordinate system. The coupled set of equations was solved using finite difference techniques and an extended SIMPLER algorithm approach. Calculation of MHD pressure drop was made in the presence of a transverse magnetic field and a gravity field for a straight duct and a magnetic field varying as Bo(R + x)-1 in the transverse direction and a gravity field for a curved bend. The results for a straight duct indicate that the MHD pressure drop increases with the increase of magnetic field strength. The MHD pressure drop when fluid flows against the gravity field is greater by an amount that equals the product of the density of the fluid and acceleration due to gravity. The results for a curved bend indicate an axial MHD pressure drop. The axial MHD pressure drop in a curved bend increases with an increase in the magnetic field strength. It is also found that the MHD pressure drop in the presence of a gravity field is slightly higher than the MHD pressure drop without a gravity field.