ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Asad Majid
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 247-262
Technical Paper | doi.org/10.13182/FST99-A106
Articles are hosted by Taylor and Francis Online.
Liquid-metal flow in the presence of a transverse magnetic field and gravity field was analyzed in a square-cross-section straight duct and a curved bend. The duct had conducting vanadium walls, and lithium coolant was used. Magnetohydrodynamic (MHD) equations with gravity field in three dimensions were developed in the modified toroidal coordinate system. The coupled set of equations was solved using finite difference techniques and an extended SIMPLER algorithm approach. Calculation of MHD pressure drop was made in the presence of a transverse magnetic field and a gravity field for a straight duct and a magnetic field varying as Bo(R + x)-1 in the transverse direction and a gravity field for a curved bend. The results for a straight duct indicate that the MHD pressure drop increases with the increase of magnetic field strength. The MHD pressure drop when fluid flows against the gravity field is greater by an amount that equals the product of the density of the fluid and acceleration due to gravity. The results for a curved bend indicate an axial MHD pressure drop. The axial MHD pressure drop in a curved bend increases with an increase in the magnetic field strength. It is also found that the MHD pressure drop in the presence of a gravity field is slightly higher than the MHD pressure drop without a gravity field.