ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. L. Rhodes, G. R. McKee, P. A. Politzer, D. W. Ross
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1042-1050
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1058
Articles are hosted by Taylor and Francis Online.
Considerable research at DIII-D has been aimed at detailed comparisons of a variety of experimental fluctuation and turbulence measurements to turbulence simulations and theory. The goals of such comparisons are to improve the understanding of turbulence and transport as well as to test and provide feedback to the theory and simulations. Progress in this area will lead to confidence in the extrapolation of predictions to next-step fusion devices and, potentially, to improved control of transport. This paper summarizes some of the more recent and significant results of comparisons of experiment to theory and simulation that have been performed at DIII-D. These comparisons cover a range of plasma conditions (ohmic, L-mode, and impurity enhanced confinement), physical phenomena [transport, avalanches, zonal flows, and geodesic acoustic modes (GAMs)], and measurements (fluctuation levels, fluctuation spectra, radial correlation lengths, heat transport, and poloidal fluctuation velocity). Results reviewed here include comparisons between experimental turbulent radial correlation lengths and nonlinear turbulence simulations, measurements showing GAM activity (a type of zonal flow) similar to predictions, long-range or avalanche-type behavior with significant heat transport similar to that seen in nonlinear simulations, and reduction of turbulence with an enhancement of confinement during impurity injection similar to theory and simulation.