ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
R. J. Groebner, T. H. Osborne, M. E. Fenstermacher, A. W. Leonard, M. A. Mahdavi, R. A. Moyer, L. W. Owen, G. D. Porter, P. B. Snyder, P. C. Stangeby, T. L. Rhodes, N. S. Wolf
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1011-1020
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1056
Articles are hosted by Taylor and Francis Online.
Studies of the H-mode pedestal in the DIII-D tokamak are presented. The global energy confinement increases as the plasma pressure on top of the pedestal increases. The best empirical description for a pedestal width parameter is pe [proportional to] (polPED)0.4, where pe is the width of the electron pressure pedestal and polPED is the poloidal beta at the top of the pedestal. The edge profiles of electron density ne, electron temperature Te, and ion temperature Ti can all have different shapes. Thus, a simple width scaling for the edge might not exist, and studies of the physics of individual profiles have been initiated. A model for the ne profile, based on self-consistent treatment of edge particle sources and edge particle transport, agrees with several experimental observations. The steep gradient region for the Te profile often extends farther into the plasma than the ne pedestal step. Magnetohydrodynamic stability provides the ultimate limits to the evolution of the pedestal and usually leads to edge instabilities called edge-localized modes (ELMs). However, the absence of ELMs in a regime called the Quiescent H-mode shows that large pedestals can be produced without ELMs.