ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. J. Groebner, T. H. Osborne, M. E. Fenstermacher, A. W. Leonard, M. A. Mahdavi, R. A. Moyer, L. W. Owen, G. D. Porter, P. B. Snyder, P. C. Stangeby, T. L. Rhodes, N. S. Wolf
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1011-1020
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1056
Articles are hosted by Taylor and Francis Online.
Studies of the H-mode pedestal in the DIII-D tokamak are presented. The global energy confinement increases as the plasma pressure on top of the pedestal increases. The best empirical description for a pedestal width parameter is pe [proportional to] (polPED)0.4, where pe is the width of the electron pressure pedestal and polPED is the poloidal beta at the top of the pedestal. The edge profiles of electron density ne, electron temperature Te, and ion temperature Ti can all have different shapes. Thus, a simple width scaling for the edge might not exist, and studies of the physics of individual profiles have been initiated. A model for the ne profile, based on self-consistent treatment of edge particle sources and edge particle transport, agrees with several experimental observations. The steep gradient region for the Te profile often extends farther into the plasma than the ne pedestal step. Magnetohydrodynamic stability provides the ultimate limits to the evolution of the pedestal and usually leads to edge instabilities called edge-localized modes (ELMs). However, the absence of ELMs in a regime called the Quiescent H-mode shows that large pedestals can be produced without ELMs.