ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. N. Carlstrom
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 997-1010
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1055
Articles are hosted by Taylor and Francis Online.
DIII-D contributions to H-mode transition physics and power thresholds are reviewed. Two general approaches were pursued: (a) establishing scaling relations based on empirical observations and (b) acquiring a theoretical understanding of the physics of the transition. The interaction of experiment results and the development of theories over the early 1990s led to the highly successful and widely accepted model of shear suppression of turbulence by crossed electric and magnetic fields (E × B) as the cause of improved confinement in H-mode. Experimental studies have also examined parameters at the edge of the plasma in order to identify a control parameter for the transition and to test various theories of the transition. The effect of the direction of the [nabla]B drift on the H-mode power threshold is used as a tool to further understand the physics of the L-H transition. Results on DIII-D and other tokamaks have guided researchers to study turbulent generated flows as a possible trigger for the L-H transition. Access to H-mode is controlled by a power threshold, and it is important to predict the threshold for next-generation tokamaks. In addition to electron density and toroidal field dependencies, it is found that many other parameters affect the power threshold. Studies of plasma size, magnetic configuration, and neutral effects have been performed. DIII-D data have been used in an international tokamak database to help establish scaling relations to predict power thresholds in future devices.