ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. C. DeBoo, D. R. Baker, M. R. Wade
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 988-996
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1054
Articles are hosted by Taylor and Francis Online.
DIII-D has studied thermal and particle transport in International Thermonuclear Experimental Reactor (ITER)-relevant regimes. In order to better distinguish between thermal transport models, it is important to test both the steady-state and time-dependent predictions of models against experimental results. Based on experiments in DIII-D, models containing the full spectral range of drift wave physics from ion temperature gradient to electron temperature gradient modes were in closest agreement with experimental observations. Inclusion of E × B flow shear stabilization effects was found to be important. Although some aspects of the experimental observations were well matched by various models, no individual model did well matching both the equilibrium and time-dependent electron and ion behavior, which clearly indicates that further improvement in transport models is required. Helium transport studies in DIII-D are encouraging for ITER in that they indicate that the measured particle diffusivity is sufficient to remove helium ash fast enough to avoid deleterious fuel dilution, but other factors for ITER such as divertor geometry and pumping speed must also be assessed.