ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
L. L. Lao, H. E. St. John, Q. Peng, J. R. Ferron, E. J. Strait, T. S. Taylor, W. H. Meyer, C. Zhang, K. I. You
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 968-977
Technical Paper | DIII-D Tokamak - Achieving Reactor-Level Plasma Pressure | doi.org/10.13182/FST48-968
Articles are hosted by Taylor and Francis Online.
Physics elements and advances crucial for the development of axisymmetric magnetohydrodynamic equilibrium reconstruction to support plasma operation and data analysis in the DIII-D tokamak are reviewed. A response function formalism and a Picard linearization scheme are used to efficiently combine the equilibrium and the fitting iterations and search for the optimum solution vector. Algorithms to incorporate internal current and pressure profile measurements, topological constraints, and toroidal plasma rotation into the equilibrium reconstruction are described. Choice of basis functions and boundary conditions essential for accurate reconstruction of L- and H-mode equilibrium plasma boundary and current and pressure profiles is discussed. The computational structure used to efficiently integrate these elements into the equilibrium reconstruction code EFIT is summarized.