ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
W. W. Heidbrink
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 945-953
Technical Paper | DIII-D Tokamak - Achieving Reactor-Level Plasma Pressure | doi.org/10.13182/FST05-A1050
Articles are hosted by Taylor and Francis Online.
A summary of fast ion experiments in the DIII-D tokamak is given. Most of the experiments involve ~80-keV deuterium beam ions. Deceleration of dilute fast-ion populations is accurately described by coulomb scattering theory. Fast waves with frequencies several times the deuterium cyclotron frequency interact with beam ions when the product of wave number and gyroradius k[perpendicular]i is [greater than or approximately equal to]1.4. Global confinement of fast ions is often excellent although sawteeth, tearing modes, and beam-driven instabilities can cause additional transport. Intense beam-ion populations often drive instabilities. Toroidicity-induced Alfvén eigenmodes (TAE) and somewhat lower frequency modes (originally called beta-induced Alfvén eigenmodes) are often observed in a wide variety of plasma conditions. Over 50% of the beam power is lost during strong activity. Damping mechanisms such as mode coupling or radiative damping are needed to explain the observed TAE stability threshold. The most unstable toroidal mode number agrees well with theoretical expectations, but the radial and poloidal structure of the mode and the observed beam-ion transport have not been adequately explained. The modes with frequencies below the TAE are probably two types of energetic particle modes: the resonant TAE and the resonant kinetic ballooning mode.