ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
W. W. Heidbrink
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 945-953
Technical Paper | DIII-D Tokamak - Achieving Reactor-Level Plasma Pressure | doi.org/10.13182/FST05-A1050
Articles are hosted by Taylor and Francis Online.
A summary of fast ion experiments in the DIII-D tokamak is given. Most of the experiments involve ~80-keV deuterium beam ions. Deceleration of dilute fast-ion populations is accurately described by coulomb scattering theory. Fast waves with frequencies several times the deuterium cyclotron frequency interact with beam ions when the product of wave number and gyroradius k[perpendicular]i is [greater than or approximately equal to]1.4. Global confinement of fast ions is often excellent although sawteeth, tearing modes, and beam-driven instabilities can cause additional transport. Intense beam-ion populations often drive instabilities. Toroidicity-induced Alfvén eigenmodes (TAE) and somewhat lower frequency modes (originally called beta-induced Alfvén eigenmodes) are often observed in a wide variety of plasma conditions. Over 50% of the beam power is lost during strong activity. Damping mechanisms such as mode coupling or radiative damping are needed to explain the observed TAE stability threshold. The most unstable toroidal mode number agrees well with theoretical expectations, but the radial and poloidal structure of the mode and the observed beam-ion transport have not been adequately explained. The modes with frequencies below the TAE are probably two types of energetic particle modes: the resonant TAE and the resonant kinetic ballooning mode.