ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. R. Ferron, P. B. Snyder
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 931-944
Technical Paper | DIII-D Tokamak - Achieving Reactor-Level Plasma Pressure | doi.org/10.13182/FST05-A1049
Articles are hosted by Taylor and Francis Online.
The experimental and modeling results on H-mode edge-localized mode (ELM) instabilities from the DIII-D tokamak project are reviewed. This work has led to the conclusion that the most common type of ELM, called Type I, is triggered by a coupled peeling-ballooning instability driven by the pressure gradient and current density in the H-mode edge pedestal region. Good agreement is found between theoretically predicted stability boundaries and toroidal mode numbers for this instability and experimental observations of edge pedestal parameters and ELM amplitude and frequency as a function of discharge shape and edge-region collisionality. The range of toroidal mode numbers for which there is access to a second stability regime is shown to play an important role. This model of H-mode edge stability has been used to predict the pedestal parameters for ITER and FIRE.