ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
A. M. Garofalo
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 918-930
Technical Paper | DIII-D Tokamak - Achieving Reactor-Level Plasma Pressure | doi.org/10.13182/FST05-A1048
Articles are hosted by Taylor and Francis Online.
The effort to understand the physics of the resistive wall mode (RWM) and develop methods to control this magnetohydrodynamic mode to allow achievement of higher pressure in advanced tokamak plasmas has been an example of successful multi-institutional collaboration at the DIII-D National Fusion Facility in San Diego, California. DIII-D research in this area has produced several advances and breakthroughs following a coordinated research plan involving a sequence of measurements, development of new analysis tools, and the installation of new diagnostic and feedback stabilization hardware: Suppression of the RWM by active magnetic feedback has been demonstrated using the DIII-D six-element error field correction coil, rotational stabilization of the RWM has been demonstrated and sustained for all values of the plasma pressure from the no-wall to the ideal-wall stability limits, improved RWM feedback stabilization has been shown using a new set of 12 internal control coils, and newly developed models of feedback have shown good agreement with the measurements. By so doing, the DIII-D work on RWM stabilization has become a cornerstone of the long-term advanced tokamak program and is having impact on the world fusion program. Presently both ITER and FIRE are including plans for RWM stabilization in their programs.