ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. J. Jayakumar, S. L. Allen, K. H. Burrell, L. L. Lao, M. A. Makowski, C. C. Petty, D. M. Thomas
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 852-863
Technical Paper | DIII-D Tokamak | doi.org/10.13182/FST05-A1044
Articles are hosted by Taylor and Francis Online.
The measurement of the plasma current profile is crucial to many operating regimes and investigations on the DIII-D tokamak. The measurement is required to obtain accurate equilibria and to accurately calculate stability and transport characteristics of the plasma. The measurement of the profile is also required to obtain the different components of the current to guide efforts on the control of the current profile and experiments toward obtaining steady-state operating regimes. The edge current profile measurement is necessary to understand the formation of edge pedestal and edge-localized modes. The DIII-D tokamak has a three-array, 45-channel motional Stark effect (MSE) diagnostic to measure the plasma current density and radial electric field. A 32-channel lithium-beam (Li-beam) diagnostic has recently been installed on the DIII-D tokamak for the measurement of edge current density. Both diagnostics measure the current profile from the measurement of the pitch angle of the magnetic field that, in turn, is derived from the orientation angle of polarization of the appropriate neutral beam spectral line. The MSE and the Li-beam diagnostics are described, and some examples of measurements are shown.