ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Ohio announces $100M Energy Opportunity Initiative fund
Ohio Gov. Mike DeWine recently announced the creation of the new JobsOhio Energy Opportunity Initiative, a $100 million fund that will be used in part to attract supply chain companies for small modular reactor manufacturing and for the creation of “nuclear energy center of excellence.”
Franz Baumgärtner
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 787-790
Technical Paper | Tritium Science and Technology - Biology, Health, and Radiation | doi.org/10.13182/FST05-A1038
Articles are hosted by Taylor and Francis Online.
The energy balance of hydrogen isotopes in H bonds of water and biomolecules results in accumulative tritium transfer from water into biomolecules. Tests of DNA dissolved in tritiated water and of maize or barley hydroponically grown in tritiated water confirm the increase. The primary hydration shell of DNA shows an accumulation factor of ~1.4, and the exchangeable hydrogens inside DNA show ~2. Logistic growth analyses of maize and barley reveal the intrinsic growth rates of tritium 1.3 and 1.2 times larger than that of hydrogen. The higher rate of tritium than hydrogen incorporation in solid biomatter is caused by the hydration shells, which constitute an intrinsic component of biomolecules.