ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Y. Ichmasa et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 775-778
Technical Paper | Tritium Science and Technology - Biology, Health, and Radiation | doi.org/10.13182/FST05-A1035
Articles are hosted by Taylor and Francis Online.
Heavy water (D2O) vapor release experiments were carried out in a greenhouse using deuterium as a substitute for tritium and uptake and loss kinetics of D2O in leaf of a tangerine tree and formation, translocation and retention of organically bound deuterium (OBD) in tangerine exposed to D2O under different growth stage were investigated. Rate constants of D2O uptake in leaves of tangerine were 0.2-1.11 hr-1 in the daytime release and 0.03-0.12 hr-1 in the nighttime release. Rate constants of D2O loss in leaf after daytime release were almost the same as those after the nighttime release. No significant differences in the half time of D2O loss were observed between daytime and nighttime releases, but those in winter experiments were about 6 times higher than those in summer ones. The retention of OBD of the edible part of tangerine at harvest was very low and OBD was 0.08% or 0.07% on average of D2O in air moisture in daytime or nighttime releases.